
I. Simple linear oscillators

A. Definitions and Background

Oscillators are a basic element in any measurement system and, in particular, are the

core element in any clocks. By definition, an oscillator is a device that produces a signal

that varies sinusoidally as a function of time, so that if s is the signal and t is time, we

have s(t) = s0 cos(ωt + ϕ0), where s0 and ϕ0 are constants, and ω = f/2π is the angular

frequency and f is the usual frequency, measured in Hz or s−1. The signal can be a

mechanical signal. Examples are the oscillations of a pendulum or a tuning fork. Typical

frequencies for a pendulum clock are on the order of 1 Hz, while typical frequencies for

a tuning fork are on the order of 500 Hz. The signal can be an electrical signal. Typical

frequencies in this case range from a few kilohertz to hundreds of MHz. The signals can

come from crystal vibrations. Quartz crystal oscillators, which are the workhorse of most

timekeeping systems, oscillate at frequencies from a few kHz to tens of MHz. The best

oscillators use atomic transitions. When an atom or molecule gives up energy, it emits a

pure electromagnetic wave. The oscillations in this case are at much higher frequencies.

For cesium atoms, which are the basis of modern-day atomic clocks, the frequency is close

to 10× 109 Hz or 10 GHz. Optical transitions occur at frequencies that are up to 100,000

times higher. Clocks are currently being developed at NIST that use a lattice of Yb atoms,

that have an oscillation frequency of about 500× 1012 Hz or 500 THz.

Operation at higher frequency is important because clocks are made by counting the

number of zero crossings. A larger number of zero-crossings per second makes it possible

to develop more accurate clocks.

Strictly speaking, an oscillator does not have to produce a sinusoidal signal. It is suffi-

cient for the signal to repeat periodically, so that s(t+T ) = s(t), and in fact real oscillators

do not produce strictly sinusoidal signals. Some nonlinearity is always present. However,

it is a remarkable fact of nature that any oscillator, when it operates at a sufficiently low

amplitude, will become sinusoidal. Moreover, any real oscillator will not operate with an

absolutely constant amplitude s0 and phase ϕ0. There are always noise sources that make

these quantities fluctuate (vary around its average value) or drift (walk away from its initial

value). We will characterize these effects later.

B. Second-Order Linear Oscillators

The simplest model of a mechanical oscillator is a mass on a spring oscillating around

a fixed equilibrium value x0 = 0, as shown in Fig. I.1.a. The force that the mass m

experiences is given by F = −kx, where x is the distance away from the equilibrium value

and k is the spring constant. In this case, Newton’s force law tells us that F = ma, where
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a is the acceleration or

m
d2x

dt2
= −kx. (I.1)

Equation I.1 is a second-order linear differential equation with constant coefficients. It will

be useful in the future to rewrite this equation as two first-order equations. If we define

the velocity v = dx/dt, we find that Eq. (I.1) becomes

dx

dt
= v,

dv

dt
= − k

m
x. (I.2)

The solution to Eq. (I.2) can be written in a number of different ways, each of which has

its uses. One way to write the solution is

x(t) = x0 cos(ωt+ ϕ0), v(t) = −ωx0 sin(ωt+ ϕ0), (I.3)

where ω = (k/m)1/2. The constants x0 and ϕ0 are determined by the initial conditions

of the oscillator, or, in other words, the state that the oscillator is in at the point in

time that we pick to be the origin, t = 0. We see that xi ≡ x(t = 0) = x0 cosϕ and

vi ≡ v(t = 0) = −ωx0 sinϕ, so that a = (x2
i + v2i /ω

2)1/2 and ϕ0 = tan−1(−vi/ωxi).

Another way to write the solution is

x(t) = xc cosωt− xs sinωt, v(t) = −ωxc sinωt− ωxs cosωt, (I.4)

where xc = a cosϕ and xs = a sinϕ. A third way to write to write this solution is

x(t) =
1

2
x̃ exp(iωt) +

1

2
x̃∗ exp(−iωt), v(t) =

i

2
ωx̃ exp(iωt)− i

2
ωx̃∗ exp(−iωt). (I.5)

where i ≡
√
−1. The constant x̃ is a complex number, so that x̃ = x̃1 + ix̃2, where

both x̃1 and x̃2 are real. We have x̃∗ = x̃1 − ix̃2 is the complex conjugate of x̃, and

we note that exp(±iωt) = cosωt ± i sinωt. It follows that x̃1 = xc and x̃2 = xs, so

that x̃ = xc + ixs = x0 exp(iϕ0). It might seem as though the use of complex numbers

unnecessarily complicates things, but, in fact, their use greatly simplifies the mathematical

discussions. The phase of the complex number C corresponds to the phase offset in the

real displacement x(t).

A point on notation: Engineers typically use j =
√
−1, instead of i. Mathematicians

and physicists typically use i. In optical engineering, both notations can be found.

The simplest model of an electrical oscillator is an LC circuit, shown in Fig. I.1.b. In

this case, we find that
dV (t)

dt
=

1

C
I(t),

dI(t)

dt
= − 1

L
V (t), (I.6)
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where L is the inductance and C is the capacitance. This equation is once again a lin-

ear second order differential equation. Mathematically, it is identical to the mechanical

oscillator, even though the physical system is completely different. Same equations; same

solutions! So, we can just write down the solution,

V (t) =
1

2
Ṽ exp(iωt) + c.c., I(t) =

i

2Z0
Ṽ exp(iωt) + c.c, (I.7)

where c.c. is short for complex conjugate, ω = 1/(LC)1/2, Z0 = (L/C)1/2 is the charac-

teristic impedance of the circuit, and Ṽ = Ṽ1 + iṼ2 is determined by the initial conditions.

We have Ṽ1 = V (t = 0) and Ṽ2 = −I(t = 0)Z0.

C. Visualizing the Solutions

In order to understand these solutions, it is useful to plot them. We will use MATLAB

for this purpose. MATLAB is a high-level programming language that has embedded in it

many special functions and routines that are necessary for engineering and physics. It also

has numerous routines for plotting. UMBC has a license; so, it is available to all UMBC

students for free.

When plotting solutions, it is necessary to pick a normalization for the quantities since

computers work with non-dimensional quantities. It is possible to normalize with respect

to the standard SI (Système International) units. The SI units are the basic units in terms

of which all other units are defined [s = second, kg = kilogram, m = meter, A = ampere,

K = kelvin, mol = mole, cd = candela]. However, it is usually better to work in units

that correspond to the physical system. In normalizing time, we are typically interested

in times that are short compared to a second; so, we might use units of ms (milliseconds,

10−3 s), µs (microseconds, 10−6 s), ns (nanoseconds, 10−9 s), or ps (picoseconds, 10−12 s).

In normalizing frequencies, we are typically interested in frequencies that are bigger than

1 Hz; so, we might use units of kHz (kilohertz, 103 Hz), MHz (megahertz, 106 Hz), GHz

(gigahertz, 109 Hz), or THz (terahertz, 1012 Hz).

In a typical laboratory experiment with a mass on a spring, the mass might equal 10

grams or 10−2 kg in standard SI units. The spring might have a spring constant of 10

N/m. In this case, the radial frequency is given by ω = [10/10−2]1/2 = 31.3 s−1, so the

frequency f = ω/2π = 5.03 Hz, which means that the weight will oscillate about five times

per second. So, normalizing with respect to the second makes sense. A typical maximum

length x0 might be on the order of 1 cm (10−2 m); so, normalizing lengths with respect 1

cm makes sense. In this case, we find that the maximum velocity is given by ωx0 = 0.316

m/s.

If we consider a typical laboratory experiment with an LC circuit, the capacitor might

have a capacitance of 100 pF (10−10 F = 10−10 s4A2kg−1m−2) and the inductor might
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have an inductance of 1 mH (10−3 H = 10−3 s−2A−2kg m2). In this case, we find that

ω = 3.16× 106 s−1, so that f = 503 kHz or f = 0.503 MHz. So, it makes sense to work in

units of kHz or perhaps MHz. In 10 µs, there are about five oscillations. If the amplitude

of the voltage is 1 V, then the characteristic impedance is given by Z0 = (10−3/10−10)1/2

ohms = 3.16×103 Ω = 3.16 kΩ. The amplitude of the current is then given by I0 = 0.316

mA or 316 µA.

Figure I.2.a shows the plot of this case as a function of time for five periods. Figure

I.2.b shows phase plots in which both the current and voltage are plotted as time varies.

These plots are useful as they show qualitative features of the evolution that time plots

don’t reveal, and we will use them many times. We see that the phase plots close in on

themselves, which corresponds to the pattern repeating periodically, as is required for a

good oscillator. Here, we show three different cases, corresponding to V0 = 0.5, 0.7, and

0.9. We also show the MATLAB code that we used to generate the plots. The curves are

elliptical in shape because the oscillator energy is constant. The energy of the mechanical

oscillator is given by

U =
1

2
mv2 +

1

2
kx2, (I.8)

and the energy of the electrical oscillator is given by

U =
1

2
LI2 +

1

2C
V 2. (I.9)

D. Damped-Driven Oscillators

In reality, all physical systems are damped. In the case of the mechanical oscillators,

our equations become
dx

dt
= v,

dv

dt
= −αv − k

m
x, (I.10)

For the electrical oscillator, if we consider the RLC circuit that we show in Fig. I.3, we

find
dV

dt
=

1

C
I,

dI

dt
= − 1

RC
I − 1

L
V, (I.11)

where R is the resistance. Loss in this circuit is reduced when the resistance is large so

that there is little current flow through the resistor. Focusing on the electrical oscillator,

we find that Eq. I.11 has the general solution

V (t) =
1

2
Ṽ+ exp(λ+t)+

1

2
Ṽ− exp(λ−t), I(t) =

λ+

2
Ṽ+ exp(λ+t)+

λ−

2
Ṽ− exp(λ−t), (I.12)

where

λ± = − 1

2RC
±

[(
1

2RC

)2

− 1

LC

]1/2

. (I.13)
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We see that if (1/2RC)2 > 1/LC, then both λ+ and λ− are real, while if 1/LC > (1/2RC)2,

then λ+ and λ− are complex conjugate numbers. For oscillators, we are interested in the

second case, where the damping is small. In this case, we find λ+ = iω − γ, where

ω =

[
1

LC
−
(

1

2RC

)2
]1/2

=
1

(LC)1/2

[
1− 1

8

L

R2C
+ · · ·

]1/2
≃ 1

(LC)1/2
, (I.14)

where we have written a Taylor expansion for ω and just kept the lowest-order term. We

find γ = 1/2RC. In this limit, we may write

V (t) =
1

2
Ṽ exp[(iω − γ)t] + c.c., I(t) =

i

2Z
Ṽ exp[(iω − γ)t] + c.c., (I.15)

where 1/Z = (ω + iγ)C. Hence, the voltage and current are no longer exactly π/2 out of

phase. Writing the voltage and current explicitly as real quantities, we find

V (t) = V0 cos(ωt+ ϕ0) exp(−γt),

I(t) = −V0

Z0
sin(ωt+ ϕ0 + ϕoff) exp(−γt),

(I.16)

where V0 and ϕ0 are two constants determined by the initial conditions, and ϕoff =

tan−1(γ/ω)

Returning to the oscillator circuit that we considered in Sec. I.C and setting the

resistance R equal to 50 kΩ, V0 = 1 V, and ϕ0 = 0, we show the evolution in Fig. I.4.a.

The resistance causes the voltage and current to spiral into the origin, ultimately damping

away completely.

This “death spiral” is of course unacceptable in real oscillators, and it must be com-

pensated by a source of energy that compensates for the loss. So, for example, in the RLC

circuit that we are considering, we can add a current source, as shown in Fig. I.5. Writing

the time derivative of the current source J(t) as J ′(t), we find that the equations that

govern the voltage and current become

dV

dt
− 1

C
I = 0,

dI

dt
+

1

RC
I +

1

L
V = J ′, (I.17)

Equation I.17 is referred to as an inhomegeneous linear equation because of the driving

term, as opposed to Eqs. I.1, I.2, I.6, I.10, and I.11, all of which are homogeneous linear

equations. The term J ′ is referred to as the inhomogeneous term.

We begin by considering the case where the driver is a pure oscillating signal, so that

J = J0 cos(ωt+ ϕ0) =
1

2
J̃ exp(iωt) + c.c., (I.18)
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where J0 and ϕ0 are constants, and J̃ = J0 exp(iϕ0) is a complex constant. We will denote

the resonant frequency of the oscillator as ωr = (1/LC)1/2. The driven solution is referred

to as a particular solution.

It is useful to choose the time origin so that ϕ0 = 0, in which case J̃ = J0 is purely

real. Because our equations are linear, we can find the solutions for V (t) and I(t) by just

setting J(t) = J̃ exp(iωt), so that J ′ = iωJ̃ exp(iωt) and then then taking the real part

at the end. That turns out to be the simplest approach mathematically. There will be an

initial transient that damps out, after which both I(t) and V (t) will be proportional to

exp(iωt). Writing I(t) = Ĩ exp(iωt) and V (t) = Ṽ exp(iωt), we find

Ṽ =
iω

C

J̃

ω2
r − ω2 + 2iωγ

=
iω

C

ω2
r − ω2 − 2iωγ

(ω2
r − ω2)2 + 4ω2γ2

J̃ ,

Ĩ = − ω2J̃

ω2
r − ω2 + 2iωγ

= −ω2(ω2
r − ω2 − 2iωγ)

(ω2
r − ω2)2 + 4ω2γ2

J̃ .

(I.19)

We then find that the real driven solutions, VD(t) and ID(t) are given by

VD(t) =
ω

ωr
Z0J0AD cos(ωt+ ϕD) =

ω

ωr
Z0J0AD [cosϕD cosωt− sinϕD sinωt]

= VDc cosωt− VDs sinωt,

ID(t) = −ω2

ω2
r

J0AD sin(ωt+ ϕD) = −ω2

ω2
r

J0AD [sinϕD cosωt+ cosϕD sinωt] ,

− ω

ωr

1

Z0
(VDs cosωt+ VDc sinωt) ,

(I.20)

AD =
ω2
r

[(ω2
r − ω2)2 + 4ω2γ2]

1/2
,

sinϕD =
ω2
r − ω2

[(ω2
r − ω2)2 + 4ω2γ2]

1/2
, cosϕD =

2ωγ

[(ω2
r − ω2)2 + 4ω2γ2]

1/2
,

VDc = AD cosϕD, VDs = AD sinϕD.

(I.21)

We now rewrite the transient solution in Eq. I.16 in the form

VT(t) = V0 cos(ωosct+ ϕ0) exp(−γt) = [Vc cosωosct− Vs sinωosct] exp(−γt),

IT(t) = −ωosc

ωr

1

Z0

[(
Vc −

γ

ωosc
Vs

)
sinωosct+

(
Vs +

γ

ωosc
Vc

)
cosωosct

]
exp(−γt),

(I.22)

where ωosc = (ω2
r − γ2)1/2 is the natural frequency of the oscillator, Vc = V0 cosϕ0, Vs =

V0 sinϕ0, and we note that sinϕoff = γ/ωr, cosϕoff = ωosc/ωr. The total voltage and
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current are given by V (t) = VD(t) + VT(t) and I(t) = ID(t) + IT(t). Writing Vc and Vs in

terms of the initial conditions, we find

Vc = V (t = 0)− VDc, Vs = − ωr

ωosc
[Z0I(t = 0)− VDs]−

γ

ωosc
Vc. (I.23)

In Fig. I.4.b, we show the transient evolution of the the voltage V (t) vs. the current

I(t) when the driving current J0 = 10 µA, and we set ω = ωr. We show two cases. In

both cases, the initial current is 0; in the first case, the initial voltage is 0 V, and in

the second case, the initial voltage is 1 V. While in both cases, the transient evolution

ultimately approaches the driven oscillation, the approach is slow once the trajectory nears

the driven oscillation. This slow approach is not desirable in practice, and we will show

later that it is possible to use nonlinearity to force a faster approach to the final oscillating

state.

A point that may appear surprising at first is that the current oscillations are much

larger than the driving current. However, most of the current oscillates back and forth

between the inductor and the capacitor; a relatively small amount of drive current is needed

to compensate for the loss in the resistor. The ratio of the ωr/γ in our illustration (≃ 30)

is relatively small, and our oscillator is in fact a poor oscillator! We chose this small value

in order to be able to illustrate the damping and transient effects. In fact, any useful

oscillator will have ratios that are many orders of magnitude higher. Some loss is however

essential. In order to use the oscillator, we must be able to measure the voltage, and that

is done by having a load, which implies resistance and some loss. The same holds true for

mechanical oscillators, where the displacement must be measured, or atomic oscillators,

where emission from a higher energy state to a lower energy state is accompanied by

radiation and energy loss. In the case of our electrical oscillator, the energy dissipation

Udiss during one oscillation period once the transient oscillation have ended is given by

Udiss =

∫ 2π/ω

0

[V 2(t)/R] dt =
π

ωR
Z2
0J

2
0

ω2

ω2
r

A2
D. (I.24)

The rate at which energy transfers to the load on average is

dŪ

dt
=

1

2R
Z2
0J

2
0

ω2

ω2
r

A2
D. (I.25)

In this computation, we assumed that the driver is itself a perfect oscillator with an

ideal sinusoidal variation in time. However, the purpose of an oscillator is to take an

imperfect driver that has many different driving frequencies and turn it into a pure signal.

If we now consider a driver that consists of N different driving frequencies, then we have

J(t) =
N∑

n=1

Jn cos(ωnt+ ϕn). (I.26)
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If we have a broadband source, then we may assume that Jn = J0 is constant over the

range of frequencies that can couple efficiently to the oscillator. We then find that

dŪ

dt
=

1

2R
Z2
0J

2
0

N∑
n=1

ω2

ω2
r

A2
D(ωn). (I.27)

In the limit of practical interest, in which ωr/γ ≫ 1, we can neglect the difference between

ω and ωr in Eq. I.27, except for the term in the denominator in which (ω2
r − ω2) appears.

Even this term can be rewritten as (ω2
r − ω2) ≃ 2ωr(ωr − ω). We now find that

A2
D(ω) ≃

1

4

ω2
r

(ω − ωr)2 + γ2
. (I.28)

We see that the A2
D falls to half its maximum value when ∆ω ≡ ω − ωr = γ.

It is usual to characterize oscillators using their linewidths or quality factors. The

linewidth is the bandwidth between the two points where the response of the oscillator

falls to half its maximum value, referred to as the full width at half maximum (FWHM)

value. In the case that we are considering, we find that the FWHM linewidth is given

by γ/π since it is usual to use the standard frequency, rather than the angular frequency

when quoting linewidths. The quality factor (Q) is defined in two different ways that are

not exactly equivalent. The first is Q = ∆f/f , where ∆f is the FWHM linewidth and f

is the resonant frequency. For the linear oscillator, we find that Q = 2γ/ωr. Another way

to define Q is

Q = 2π × energy stored

energy dissipated per cycle
. (I.29)

For the electrical oscillator that we considered, the energy stored is given by Ustored =

(L/2)I2max = (1/2C)V 2
max, where Imax is the maximum current flowing through the induc-

tor, Vmax is the maximum voltage at the capacitor, and we note that the stored energy oscil-

lates back and forth between the two. From Eq. I.20, we see that (L/2)I2max = (L/2)J2
0A

2
D.

From Eq. I.24, we see that in the limit of interest to us (ω ≃ ωr), Udiss = (2π/ωr)
L

2RC J2
0A

2
D.

Recalling that γ = 1/2RC, we find that Q = 2π(Ustored/Udiss) = 2γ/ωr, which is the same

result that we obtained with our previous definition. These two definitions are equivalent

for any linear oscillator with a single oscillation frequency, no matter whether the oscillator

is electrical or mechanical.

E. Matrix Representations: Eigenvalues and Eigenvectors

To find the oscillation frequencies in Eq. (I.3), (I.7), and (I.14), we can use a simple

algebraic approach. To find Ṽ and Ĩ in Eq. (I.19), we can also use a simple algebraic ap-

proach in which we first eliminate one of the variables, solve for the second, and substitute
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to find the first. However, this ad hoc approach no longer works well when we consider

more complex system. Instead, it is better to use the methods of linear algebra in which

we use matrix representations.

We begin by defining a 2× 1 column vector

u =

[
u1

u2

]
, (I.30)

where u1 = x and u2 = v for the mechanical oscillator, and u1 = V and u2 = I for the

electrical oscillator. We can now write the equations that govern the oscillator as

du

dt
= Au, (I.31)

where

A =

[
A11 A12

A21 A22

]
(I.32)

is a 2× 2 matrix. The rule for multiplying a 2× 2 matrix and 2× 1 column vector is

v = Au ↔ vm =

2∑
n=1

Amnun, (I.33)

where v is also a 2 × 1 column vector. For the mechanical driven-damped oscillator, we

have A11 = 0, A12 = 1, A21 = −k/m, and A22 = −α. For the electrical oscillator, we have

A11 = 0, A12 = 1/C, A21 = −1/L, A22 = −1/RC.

To find the oscillation frequencies, we search for solutions that have the form du/dt =

λu since we know that the solution of (almost) any linear ordinary differential equation is

composed of the sum of functions that vary exponentially in time. (The small caveat is

that in some cases, the exponentials have to multiplied by polynomials in time.) Writing

u = ũ exp(λt), Eq. I.31 becomes

λũ = Aũ or (A− λI)ũ = 0, (I.34)

where I is the identity matrix, whose elements are given by I11 = 1, I12 = 0, I21 = 0,

and I22 = 1. This equation is an eigenvalue equation. Eigenvalue equations play an

important role in almost every area of science and engineering; so, there are many textbooks

that describe their properties, as well as computational implementations that solve these

equations. We will take advantage of the MATLAB implementations. We see that one solution

to Eq. (I.34) is the trivial solution ũ = 0. In order for there to be non-trivial solutions,

the two equations that make up the matrix equation [(A11 − λ)ũ11 + A12ũ12 = 0 and

A12ũ11+(A22−λ)ũ22 cannot be independent. More generally, we say that the determinant
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of the matrix A − λI = 0, which is written det(A − λI) = 0. The determinant of any

2× 2 matrix B is given by B11B22 −B12B21 and for our eigenvalue equation that implies

(A11 − λ)(A22 − λ) − A12A21 = 0 or λ2 − λ(A11 + A22) + (A11A22 − A12A21) = 0. We

thus obtain a quadratic equation for λ. Substituting in the expressions for either the

mechanical or electrical oscillator, we can obtain the same expressions for the complex

oscillation frequencies that we obtained before. More generally, these values of λ are

referred to as eigenvalues

Once we have found the eigenvalues, we can find corresponding values of ũ that solve

these equations. These are referred to as eigenvectors. For each eigenvalue, we can use

either of the two rows of the eigenvalue equation. If we consider for example the electrical

oscillator without damping, we find that eigenvectors are given by

e+ =

[
1

i/Z0

]
, e− =

[
1

−i/Z0

]
, (I.35)

corresponding respectively to the eigenvalues λ+ = iωr and λ− = −iωr. Since the equations

are linear, any eigenvector when multiplied by a constant is also an eigenvector. So, the

general solution of Eq. (I.31) becomes

u =
1

2
ũ+e+ exp(iωrt) +

1

2
ũ−e− exp(−iωrt), (I.36)

where ũ+ and ũ− are complex constants that depend on the initial conditions. At t = 0,

we see that

u(t = 0) =

[
V (t = 0)
I(t = 0)

]
=

[
(1/2)(ũ+ + ũ−)
(i/2Z0)(ũ+ − ũ−)

]
, (I.37)

from which we conclude ũ+ = V (t = 0) − iZ0I(t = 0) and ũ− = V (t = 0) + iZ0I(t = 0).

We see that ũ+ and ũ− are complex conjugates, which ensures u is real at all times.

Comparing Eq. I.37 to Eq. I.7, we see that Ṽ = ũ+. This solution is consistent with

our earlier results. So, we have learned nothing new. However, this approach is the best

approach to use when considering higher-dimensional oscillators.

To solve the driven-damped oscillator equations use matrix methods, we first rewrite

Eq. (I.17) in the form
du

dt
− Au = D, (I.38)

where

A =

[
0 1/C

−1/L 1/RC

]
, D =

[
0
J ′

]
. (I.39)

We assume that our driver D is at a single frequency, so that D = D̃ exp(iωt), where D̃ is

a known constant vector, and we search for solutions in the form u = ũ exp(iωt), where ũ
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is an unknown constant vector. Writing out these vectors, we have

D̃ =

[
0

iωJ̃

]
and ũ =

[
Ṽ
Ĩ

]
. (I.40)

Equation I.38 now becomes

Bũ = D̃, (I.41)

where B = iωI− A. To solve Eq. I.41, we may use the inverse of B, written as B−1. This

matrix satisfies the relation B−1B = BB−1 = I. It then follows that

ũ = B−1D̃. (I.42)

In general, it is not efficient to solve matrix equations using the inverse when the system

of equations becomes large. It is better to use Gauss-Jordan elimination. However, this

approach is good for the second-order system that we are considering here. The inverse of

a matrix B is given by

B−1 =
1

det(B)

[
B22 −B12

−B12 B11

]
, (I.43)

which becomes explicitly in this case

B−1 =
1

[iω (iω − 1/RC) + 1/LC]

[
iω + 1/RC 1/C

−1/L iω

]
. (I.44)

Operating with B−1 on D̃ and using the relations 1/RC = 2γ, 1/LC = ω2
r , we obtain

Eq. I.19.

Due to the importance of linear algebra in a wide variety of applications, MATLAB has

implemented a powerful set of algorithms to solve eigenvalue problems and linear systems

of equations. For the numerical examples that we presented in Fig. I.4, we have C = 10−10,

L = 10−3, and R = 5× 104 in appropriate SI units. Explicitly, we then have

A =

[
0 1010

−103 −2× 105

]
. (I.45)

In general, it is not good computational practice to use numbers with large exponents. It

is better to use quantities that are all on the order of one by appropriately renormalizing

quantities. If we use microseconds instead of seconds and we use milliamperes instead of

amperes, our matrix becomes

A =

[
0 10
−1 −0.2

]
, (I.46)

and we see that none of the quantities differs too much from one. This sort of dimensional

analysis also gives us an immediate feel for the rough value that quantities will have.
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Frequencies will be on the order a megahertz, voltages will be on the order of one volt,

and currents will be on the order of milliamperes. That is consistent with the results that

we already plotted in Fig. I.2.

To find the eigenvalues and eigenvectors, we may use MATLAB’s eig routine. The

command [E,L] = eig(A) produces the eigenvalues λ± = −0.1 ± 3.1607i, which are the

diagonal elements of the matrix L. We show the output in Fig. I.6.a. This command also

produces the eigenvectors e± = [0.9535,−.0095± 0.3014]t, where t denotes the transpose,

so that

[0.9535,−.0095± 0.3014]t =

[
0.9535

−.0095± 0.3014

]
.

The eigenvectors appear as the columns of the matrix E = [e+, e−]. MATLAB uses the l2

norm for eigenvectors in which the sum of the absolute squares equals 1. In order to put the

eigenvectors in the form where the first element of e+ and e− both equal 1.0, we divide E by

E11, which yields e± = [1.0,−0.01±0.3161i]. We infer that γ = 0.1 µs−1 and ωosc = 3.1607

µs−1, corresponding to an oscillation frequency of 0.503 MHz or 503 kHz, which is what

we found earlier. We infer as well that i/Z = (i/Z0)(ωosc/ωr + iγ/ωr) = −0.01 + 0.3161i

kΩ−1, so that Z0 = |Z| = 3.162 kΩ, which is again consistent with our earlier result.

To find ũ = [Ṽ , Ĩ]t for the case driven solution that we considered in Fig. I.4, we first

recall that ω = ωr =
√
10 = 3.1623 µs−1 in the case that we considered. We also recall

that iωJ̃ = i
√
10× 0.01 mA-µs−1. Hence, we find

B =

[
i
√
10 −10
1 i

√
10 + 0.2

]
, D̃ =

[
0

i0.01
√
10

]
. (I.47)

To find ũ = [Ṽ , Ĩ]t, we use the MATLAB command u = B\D. This command uses Gauss-

Jordan elimination to solve for ũ. We show the results in Fig. I.6.b. We find Ṽ = 0.5

V and Ĩ = 0.1581i mA, which equals 158 µA. These results are consistent with our prior

results.

Exercises

These exercises combine investigative exercises that require you to do some on-line

research (I), mathematical or computational exercises that require you to verify the steps

in the calculations of this section or extend them (M), and experimental exercises that

require you to build something to test the ideas in this section (E).

1. (I) The most commonly used oscillators are quartz crystal oscillators. What is their

operating principle? What is its operating frequency range? What are typical quality

factors?

2. (I) Rubidium and sapphire crystal oscillators are alternatives to quartz crystal oscil-

lators. What are their advantages and disadvantages?

12



3. (I) The best oscillators are based on atomic transitions. Cesium transitions are the

basis of modern-day atomic clocks. Their is increasing interest in using transitions

of an ytterbium lattice, and future clocks are likely to based on these transitions.

What are the operating frequencies and linewidths of these oscillators? What are the

corresponding quality factors?

4. (M) For the mechanical oscillator that is described in Sec. I.C, modify the code Os-

cillatorI2 (part b) to make a phase plot of x vs. v for five cases where the maximum

excursion ranges between 1 cm and 4 cm. Calculate the energy that is stored in the

oscillator for each of these cases.

5. (M) Verify Eq. (I.5) by substitution into the governing equation, Eq. (1.2), and relate

x̃ and ṽ to the initial conditions.

6. (I and M) If we consider hydrogen-iodide (HI), which is a diatomic molecule, the

hydrogen atom will vibrate in the potential well of the iodine atom. While a real

understanding of the molecule must use quantum mechanics, a basic understanding

can be obtained by treating the hydrogen atom as a simple second-order oscillator. The

frequency of vibration can be calculated from the wavenumber of the emissions, which

is 2230 cm−1 and the approximate magnitude of the oscillations can be calculated from

the dimension of the molecule, which is 161 pm. The mass of the hydrogen atom is

close to 1 atomic unit. Calculate the frequency of vibration of the hydrogen atom and

its mass in SI units. Use that information to calculate the effective spring constant.

Suppose that the energy stored in the vibrational motion is given by hf , where h is

Planck’s constant and f is the oscillation frequency, how large an excursion is the

hydrogen atom making and how does that compare to the size of the molecule?

7. (M) Derive Eq. I.11 using Kirchhoff’s current law for the circuit of Fig. I.3.

8. (M) Verify Eqs. I.12–I.16 by substitution into the governing equation, Eq. I.11.

9. (M) Derive equivalent expressions to Eqs. I.12-I.16 for the mechanical oscillator, de-

scribed by Eq. 1.10. For the example parameters of Sec. I.C, what damping rate α

would correspond to γ/ωr = 1/100, 1/10
√
10, and 1/10? Modify OscillatorI4 (part

a) to make phase plots for each of these cases.

10. (M) Verify Eqs. 1.19–1.23 by substitution into the governing equation, Eq. (I.17).

11. (M) Modify OscillatorI4 (part b) to plot the driven oscillation for five driving

frequencies, equal to 0.25ωr, 0.5ωr, 1.0ωr, 1.5ωr, and 2.0ωr.

12. (M) Derive an expression for a mechanical oscillator that is equivalent to Eq. I.17.

What corresponds physically to the driving current? Draw a corresponding picture.

13. (M) The expression for A2
D that we derived, given in Eq. I.28, is proportional to the

13



Lorentzian function,

fL(ω) =
1

π

γ

(omega− ωr)2 + γ2
.

a. Show that
∫∞
−∞ fL(ω) dω = 1.

b. Use MATLAB to plot L(ω) vs. ω−ωr, assuming that γ/omr = 1/100, 1/10
√
10,

and 1/10.

c. We stated that the expression for AD in Eq. I.28 is a good approximation to

the exact expression for AD in Eq. I.21. Compare these expressions by plotting

A(ω) = (γ/ωr)AD(ω) vs. x = (ω − ωr)/γ for both these expressions for γ/ωr =

1/2, 1/10, and 1/100. [NOTE: We have defined our lineshape function so that

its maximum always equals 1 and is located at x = 0. The lineshape falls to

half its maximum at x = ±1. This sort of normalization is useful for making

comparisons.]

14. (M) For our example mechanical oscillator, with the value of α given by γ/ωr = 1/10,

find the matrix A that corresponds to Eq. I.39. Find the eigenvalues and eigenfunctions

of this matrix using MATLAB. Show the MATLAB ouput. Assume you have a driving

force with an amplitude of 1 mN at the resonant frequency, find the matrix B, and use

MATLAB to find ũ = [x̃, ṽ]t. Show the MATLAB output. Write the real expressions x and

v and use a modified version of OscillatorI4 to draw a phase plot of the oscillation.

How much energy is stored in the oscillator?

15. (M and I) MATLAB can work with symbols as well as numbers. Use this capability to

obtain Eq. I.24 and a symbolic expression for ũ. Compare to Eq. I.19.

16. (E) Obtain a kit for a mechanical oscillator with springs and weights. Measure the

oscillations as a function of time and compare to what is theoretically expected.

17. (E) Obtain a kit that will enable you to build an RLC oscillator. Measure the oscil-

lations as a function of time and compare to what is experimentally expected.
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Additional Materials 
 

1. Draft of figures 1 and 3 
2. Draft of figure 2 
3. Draft of figure 4 
4. Draft of figure 5 
5. Draft of figure 6 
6. MATLAB code:  OscillatorI2 
7. MATLAB code:  OscillatorI4 





																											
		
	

																																										
	
Figure	2.		Plots	of	the	voltage	and	current	(a)	as	a	function	time	and	(b)	as	phase	
plots.	
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Figure 4.  Phase plots of driven-damped oscillators.  (A) The damped oscillator without 
driving. The phase trajectory tends to zero.  (B) The driven oscillator with a single 
driving frequency.  The trajectory tends toward the driven solution. 
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Figure I.6.  MATLAB output for the cases considered in Fig. I.4.  (A) The eigenvalues 
and eigenvectors for the damped oscillations, shown in Fig. I.4.a.  (B) The driven voltage 
and current solutions, shown in Fig. I.4.b. 

(A) 

(B) 







4/24/19 9:23 AM /Users/menyuk/Documents/MATLAB/OscillatorI4.m 

% OscillatorI4 
% This routine calculates phase diagrams for the parallel 
% RLC circuit 
% (a) without a driving voltage, (b) with a driving voltage 

% Lin= inductance (in mH) 
% Cap= capacitance (in pf) 
% Res= resistance (in kOhms) 

% V0a = initial voltage amplitude, part (a) (in volts) 
% I0a = initial current amplitude, part (a) (in uA) 

% FreqRat = ratio of driving to resonant frequency, 
% part (b) 
% V0b = initial voltage amplitudes, part (b) (in volts) 
% J0 = driving current amplitude, part (b) (in uA) 

% Nose= number of oscillations plotted 
% Npoints = number of points in each period 

% omega= natural oscillation frequency 
% gamma= damping rate 
% Imp= real impedance 
% phoff = phase offset 

% omr = resonant frequency 
% gamRat = ratio of the damping and resonant frequencies 
% omRat = ratio of the resonant and natural frequencies 
% ADc = driving voltage amplitude; 
% CDc = cosine (driving angle) 
% SDc = sine (driving angle) 
% VDc, VDs = in-phase and quadrature quadratures of 
% the driving voltages 

% [Current,Voltage] = current and voltage, part (a) 

%Part (b): 
% [CurD,VolD] = driven current and voltage 
% [CurTl,VolTl] = transient current and voltage 1

% [CurT2,VolT2] = transient current and voltage 2 

close all 

Lin= 1, Cap= 100, Res= 50, V0a = 1, 
FreqRat = 1.0, V0b = [0 1], J0 = 10, 

% set initial values 

L = Lin*le-3; C = Cap*le-12; R = Res*le3; 
% convert to SI units 

gamma= 1/(2*R*C); omega=((l/(L*C)) - gammaA2)A(l/2); 
% compute the damping coefficient and frequency 

gam = gamma/omega; %compute the damping ratio 
Imp= sqrt(L/C); phoff = atan(gamma/omega); 

% calculate the impedance amplitude and phase offset 
Ia= V0a/Imp; I0a = le6*Ia; 

% compute the initial current amplitude (part a) in uA 

Jb = J0*1e-6 %convert to SI units 
omr = 1/sqrt(L*C); gamRat = gamma/omr; 
omRat = omr/omega; 

% compute the resonant frequency, damping ratio, 
% and resonant to natural frequency ratio 
% ( part b) 
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4/24/19 9:23 AM /Users/menyuk/Documents/MATLAB/OscillatorI4.m 

ADc = 1/((1-FreqRatA2)A2 + 4*FreqRatA2*gamRatA2)A(l/2); 
CDc = 2*FreqRat*gamRat*ADc; SDc = (1-FreqRatA2)*ADc; 
VDc = FreqRat*Imp*Jb*ADC*CDc; 
VDs = FreqRat*Imp*Jb*ADc*SDc; 

% in-phase and quadrature components of the driven 
% voltage 

Vcl = V0b(l) - VDc; Vc2 = V0b(2) - VDc; 
Vsl = omRat*VDs - gam*Vcl; 
Vs2 = omRat*VDs - gam*Vc2; 

% transient voltage and current amplitude coefficients 

Nose= 15, Npoints = 100, Ntot = Nosc�points + 1; 
% set the plotting parameters 

Nt = 1:Ntot; time= 2*Pi*(Nt-l)/Npoints; 
% set up the time array 

% Part (a): Compute and plot voltage and current 
Voltage= V0a*cos(time).*exp(-gam*time); 
Current= -I0a*sin(time + phoff).*exp(-gam*time); 

% voltage and current as functions of time 

plot(Current,Voltage) 
axis( [-300,300,-1.0,1.0]) 
title('Phase plot: Voltage vs. Current') 
xlabel('Current (\muA)') 
ylabel ('Voltage (V)') 
annotation('arrow', 'Position', [0.807,0.5,0,0.005]) 

% Part (b): Compute and plot the voltage and current 
% evolution, starting from the given initial conditions. 
% The initial current is assumed to equal zero. 

FreqD = FreqRat*omRat; % driving frequency 
VolD = VDc*cos(FreqD*time) - VDs*sin(FreqD*time); 
CurD = -(1/(omRat*Imp))*(VDS*COS(FreqD*time) ... 

+ VDc*sin(FreqD*time)); CurD = CurD*le6
VolTl = (Vcl*cos(time) - Vsl*sin(time)),*exp(-gam*time); 
CurTl = -(1/(omRat*Imp))*((Vcl-gamRat*Vsl)*sin(time) ... 

+(Vsl+gamRat*Vcl)*cos(time)),*exp(-gam*time); 
CurTl = CurTl*le6 
VolT2 = (Vc2*cos(time) - Vs2*sin(time)),*exp(-gam*time); 
CurT2 = -(1/(omRat*Imp))*((Vc2-gamRat*Vs2)*sin(time) •.• 

+(Vs2+gamRat*Vc2)*cos(time)),*exp(-gam*time); 
CurT2 = CurT2*1e6 
VolTl = VolTl + VolD; CurTl = CurTl + CurD; 
VolT2 = VolT2 + VolD; CurT2 = CurT2 + CurD; 

figure 
hold on 
plot(CurD,VolD, 'LineWidth',4) 
plot(CurTl,VolTl, 'k',CurT2,VolT2) 
axis( [-300,300,-1.0,1.0]) 
title('Phase plot: Voltage vs. Current') 
xlabel('Current (\muA)') 
ylabel ('Voltage (V)') 
hold off 
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